
A linear explanation of shaders from beginner to advanced. Improve your
game graphics with Unity and become a professional technical artist.

Written by
Fabrizio Espíndola

Designed by
Pablo Yeber

Free Sample

The Unity Shaders Bible.
(Free Sample)

Fabrizio Espíndola.
Game developer & technical artist.

The Unity Shaders Bible, Free Sample.
Jettelly ® all rights reserved. www.jettelly.com
DDI 2021-A-11866

Credits.

Author.
Fabrizio Espíndola.

Design.
Pablo Yeber.

Technical Revision.
Daniel Santalla.

Translation, grammar, and spelling.
Martin Clarke.

About the author.

Fabrizio Espíndola is a Chilean video game developer, specialised in Computer Graphics. He
has dedicated much of his career to developing visual effects and technical art, his projects
include Star Wars - Galactic Defence, Dungeons and Dragons - Arena of War, Timenaus,
Frozen 2, and Nom Noms. He is currently developing some independent titles together with
his team at Jettelly.

His great passion for video games was born in 1994 after Donkey Kong Country (Super
Nintendo) appeared, a game that awoke a deep interest for him in the tools and techniques
associated with this technology. To date, he has more than ten years of experience in the
industry, and this book contains a part of the knowledge he has acquired during this time.

Years ago, while at university, his professor Freddy Gacitúa once told him:

“ “
A person becomes a professional when

he or she contributes to others.

These words were very significant for him in his career development and generated his
need to bestow his knowledge on the international community of independent video game
developers.

Jettelly was officially inaugurated on March 3, 2018, by Pablo Yeber and Fabrizio Espíndola.
Together and committed, they have developed different projects among which the Unity
Shaders Bible is one of the most important due to its intellectual nature.

Contents.

Preface.	 9

Chapter I | Introduction to the shader
programming language.

1. Initial observations. 	 14
1.0.1. | Properties of a polygonal object.	 14
1.0.2. | Vertices.	 16
1.0.3. | Normals.	 17
1.0.4. | Tangents.	 17
1.0.5. | UV Coordinates.	 18
1.0.6. | Vertex Color.	 19
1.0.7. | Render Pipeline Architecture.	 19
1.0.8. | Application stage. 	 21
1.0.9. | Geometry processing phase. 	 21
1.1.0. | Rasterization stage.	 23
1.1.1. | Pixel processing stage.	 24
1.1.2. | Types of Render Pipeline.	 24
1.1.3. | Forward Rendering.	 26
1.1.4. | Deferred Shading.	 28
1.1.5. | What Render Pipeline should I use? 	 28
1.1.6. | Matrices and coordinate systems.	 29

2. Shaders in Unity.	 34
2.0.1. | What is a shader?	 34
2.0.2. | Introduction to the programming language.	 35
2.0.3. | Shader types.	 36
2.0.4. | Standard Surface Shader.	 37
2.0.5. | Unlit Shader.	 38
2.0.6. | Image Effect Shader.	 38
2.0.7. | Compute Shader.	 38
2.0.8. | Ray tracing Shader.	 39

3. Properties, commands and functions.	 40
3.0.1. | Structure of a Vertex-Fragment Shader.	 40
3.0.2. | ShaderLab Shader.	 44
3.0.3. | ShaderLab Properties.	 45

3.0.4. | Number and slider properties.	 47
3.0.5. | Color and vector properties.	 47
3.0.6. | Texture properties.	 48
3.0.7. | Material Property Drawer.	 51
3.0.8. | MPD Toggle.	 52
3.0.9. | MPD KeywordEnum.	 54
3.1.0. | MPD Enum. 	 56
3.1.1. | MPD PowerSlider and IntRange.	 57
3.1.2. | MPD Space and Header.	 59
3.1.3. | ShaderLab SubShader.	 60
3.1.4. | SubShader Tags.	 62
3.1.5. | Queue Tag.	 63
3.1.6. | Render Type Tag.	 66
3.1.7. | SubShader Blending.	 71
3.1.8. | SubShader AlphaToMask.	 76
3.1.9. | SubShader ColorMask.	 77
3.2.0. | SubShader Culling and Depth Testing.	 78
3.2.1. | ShaderLab Cull.	 81
3.2.2. | ShaderLab ZWrite.	 83
3.2.3. | ShaderLab ZTest.	 84
3.2.4. | ShaderLab Stencil.	 87
3.2.5. | ShaderLab Pass.	 93
3.2.6. | CGPROGRAM / ENDCG.	 95
3.2.7. | Data types.	 97
3.2.8. | Cg / HLSL Pragmas.	 101
3.2.9. | Cg / HLSL Include.	 103
3.3.0. | Cg / HLSL Vertex Input & Vertex Output.	 104
3.3.1. | Cg / HLSL Variables and Connection Vectors.	 108
3.3.2. | Cg / HLSL Vertex Shader Stage.	 109
3.3.3. | Cg / HLSL Fragment Shader Stage.	 112
3.3.4. | ShaderLab Fallback.	 114

4. Implementation and other concepts.	 115
4.0.1. | Analogy between a shader and a material.	 115
4.0.2. | Your first shader in Cg or HLSL.	 115
4.0.3. | Adding transparency in Cg or HLSL.	 118
4.0.4. | Structure of a function in HLSL.	 118
4.0.5. | Debugging a shader.	 122
4.0.6. | Adding URP compatibility.	 125
4.0.7. | Intrinsic functions.	 130

4.0.8. | Abs function.	 130
4.0.9. | Ceil function.	 135
4.1.0. | Clamp function.	 140
4.1.1. | Sin and Cos functions.	 145
4.1.2. | Tan function.	 150
4.1.3. | Exp, Exp2 y Pow functions. 	 154
4.1.4. | Floor function.	 156
4.1.5 | Step and Smoothstep functions.	 160
4.1.6. | Length function.	 164
4.1.7. | Frac function.	 168
4.1.8. | Lerp function.	 172
4.1.9. | Min and Max functions.	 175
4.2.0. | Time and animation.	 176

Chapter II | Lighting, shadow
and surfaces.

5. Introduction to the chapter.	 181
5.0.1. | Configuring inputs and outputs.	 181
5.0.2. | Vectors.	 186
5.0.3. | Dot Product.	 188
5.0.3. | Cross Product.	 192

6. Surface.	 194
6.0.1. | Normal Maps.	 194
6.0.2. | DXT compression.	 200
6.0.3. | TBN Matrix.	 205

7. Lighting.	 207
7.0.1. | Lighting model.	 207
7.0.2. | Ambient Color.	 207
7.0.3. | Diffuse Reflection.	 211
7.0.4. | Specular Reflection.	 220
7.0.5. | Environmental Reflection.	 232
7.0.6. | Fresnel Effect.	 242
7.0.7. | Structure of a Standard Surface.	 252
7.0.8. | Standard Surface Input & Output.	 254

8. Shadow.	 256
8.0.1. | Shadow Mapping.	 256

8.0.2. | Shadow Caster.	 257
8.0.3. | Shadow Map Texture.	 262
8.0.4. | Shadow implementation.	 267
8.0.5. | Built-in RP Shadow Map optimization.	 271
8.0.6. | Universal RP Shadow Mapping.	 275

9. Shader Graph.	 282
9.0.1. | Introduction to Shader Graph.	 282
9.0.2. | Starting in Shader Graph.	 284
9.0.3. | Analyzing its interface.	 286
9.0.4. | Your first shader in Shader Graph.	 288
9.0.5. | Graph Inspector.	 295
9.0.6. | Nodes.	 297
9.0.7. | Custom Functions.	 299

Chapter III | Compute Shader,
Sphere Tracing and Ray Tracing.

10. Advanced concepts.	 304
10.0.1 | Compute Shader structure.	 305
10.0.2 | Your first Compute Shader.	 309
10.0.3 | UV coordinates and texture.	 322
10.0.4 | Buffers.	 326

11. Sphere Tracing.	 337
11.0.1 | Implementing functions with Sphere Tracing.	 339
11.0.2 | Projecting a texture.	 348
11.0.3 | Smooth minimum between two surfaces.	 359

12. Ray Tracing.	 360
12.0.1 | Configuring Ray Tracing in HDRP.	 361
12.0.2 | Using Ray Tracing in your scene.	 368

Index.	 371
Special thanks.	 374

9

The Unity Shaders Bible

Preface.

One of the biggest problems that video game developers have when they start studying
shaders, regardless of the rendering engine, is the lack of information for beginners on the
web. Whether the reader is an independent developer or focused on AAA projects, it can be
a little complicated breaking into this subject because of the technical knowledge required
to develop these kinds of programs.

Despite this challenge, by being multi-platform, Unity offers a great advantage, the video
game code only needs to be written once, then it can be exported to different devices,
including consoles and smartphones. Likewise, once the adventure into the world of shaders
starts, the code is written once and then the software takes care of its compilation for the
different platforms (OpenGL, Metal, Vulkan, Direct3D, GLES 20, GLES 3x).

The Unity Shaders Bible has been created to solve most of the problems met when starting
in this world. You will begin by reviewing the structure of a shader in the Cg and HLSL
languages and then get to know its properties, commands, functions, and syntax.

Did you know that in Unity there are three types of Render Pipeline, each with its own
qualities? Throughout the book, you will analyse them, verifying how Unity processes the
graphics to project your video games onto the computer screen.

10

The Unity Shaders Bible

I. Topics we will see in this book.
The book is divided into three chapters, in which points are addressed as they are required
linearly. All the code seen in this book has been tested using the Visual Studio Code editor
and checked in Unity for the different types of Render Pipeline.

Chapter I: Introduction to the shader programming language.
This chapter looks at the base knowledge needed before starting, such as shader
structure in ShaderLab language, the analogy between the properties and connection
variables, SubShader and commands (ColorMask, Stencil, Blending, etc.), Passes and
structure of Cg and HLSL languages, function structure, Vertex Input analysis, Vertex
Output analysis, the analogy between a semantic and a primitive, Vertex Shader
Stage structure, Fragment Shader Stage structure, matrices and more. This chapter
is the starting point to understand fundamental concepts about how a shader works
in Unity.

Chapter II: Lighting, shadow, and surfaces.
This section addresses highly relevant issues, such as: Normal Maps and their
implementation, reflection maps, lighting and shadow analysis, a basic lighting
model, surface analysis, mathematical functions, specularity, and ambient light.
Furthermore, a review of Shader Graph and its structure, HLSL functions, nodes,
properties and more. In this chapter, you will make your video game look professional
with simple lighting concepts.

 Compute shader, Ray Tracing, and Sphere tracing.
Here you will put into practice advanced concepts, such as: the structure of a
Compute Shader, buffer variables, Kernel, Sphere Tracing implementation, implicit
surfaces, shapes and algorithms, an introduction to Ray Tracing, configurations, and
high-quality rendering. Your studies will conclude in this chapter by investigating
GPGPU programming (general-purpose GPU), using .compute type shaders, trying
the Sphere Tracing technique and using Direct Ray Tracing (DXT) in HDRP.

11

The Unity Shaders Bible

II. Recommendations.
It is essential to work with a code editor with IntelliSense in graphics language programming,
specifically in Cg or HLSL. Unity has Visual Studio Code, which is a more compact version of
Visual Studio Community. This editor contains some extensions that add IntelliSense to C#,
ShaderLab, and HLSL.

For those using the Visual Studio Code editor, the installation of the following extensions
is recommended: C# for visual studio code (Microsoft), Shader language support for VS
Code (Slevesque), ShaderLab VS Code (Amlovey), Unity Code Snippets (Kleber Silva).

III. Who this book is for.
This book has been written for Unity developers looking to improve their graphics skills
or create professional-looking effects. It is assumed that the reader already knows,
understands, and has access to the Unity interface; therefore, it will not be gone into in
detail.

Having previous knowledge of C# or C++ would be a great asset in understanding the
content presented in this book; However, it is not an exclusive requirement.

It is fundamental to have some basic knowledge of arithmetic, algebra, and trigonometry
to understand more advanced concepts. All the same, mathematical operations and
functions to fully understand what you are developing will be reviewed.

IV. Glossary.
Given its nature, there will be phrases and words that are distinguished from the rest in this
book, they are easy to identify because they are highlighted to emphasise an explanation
or concept. Likewise, there are blocks of code in HLSL to illustrate some functions.

Some words are shown in bold, which is also used to emphasise lines of code. Other
technical definitions start with a capital letter (e.g., Vertex), while those of a constant nature
will be presented entirely in the same style (e.g., RGBA).

In the function definitions arguments are shown with the acronym RG (e.g., NRG) and space
coordinates shown with AX (e.g., YAX). Also, there are blocks of code that include three
periods (...), these refer to variables or functions included by default within the code.

https://marketplace.visualstudio.com/items?itemName=ms-dotnettools.csharp
https://marketplace.visualstudio.com/items?itemName=slevesque.shader
https://marketplace.visualstudio.com/items?itemName=slevesque.shader
https://marketplace.visualstudio.com/items?itemName=amlovey.shaderlabvscodefree
https://marketplace.visualstudio.com/items?itemName=kleber-swf.unity-code-snippets

12

The Unity Shaders Bible

V. Errata.
When writing this book, every precaution was taken to ensure the fidelity of its content.
Even so, please remember that we are human beings, and it is very likely that some points
may not have been explained well or may have incurred mistakes in the spelling/grammar
correction.

If you find a conceptual error, code or otherwise, we would appreciate it if you could inform
us by email at contact@jettelly.com indicating USB Errata in the subject field; in this way,
you will be helping other readers reduce their level of frustration, by improvements being
made in the following releases.

Furthermore, if you feel that this book is missing some interesting sections, you are welcome
to email us, and we will include that information in future releases.

VI. Assets and donations.
All the work you see in Jettelly has been developed by its own members, this includes
drawings, designs, videos, audio, tutorials, and everything you see with the brand.

Jettelly is an independent video game development studio, your support is critical to us. If
you want to support us financially, you can do so directly through our PayPal account.

https://www.paypal.com/paypalme/jettelly

This book has exclusive assets to reinforce its content that are included in the download.
These have been developed using Unity 2020.3.21f1 and analyzed in both Built-in and
Scriptable Render Pipeline.

VII. Piracy.
Before copying, reproducing, or supplying this material without our consent, remember that
Jettelly is an independent and self-financed studio. Any illegal practice could affect our
integrity as a developer team.

This book is patented under copyright, and we will protect our licenses seriously. If you find
this book on a platform other than Jettelly or detect an illegal copy, please contact us at
contact@jettelly.com (attaching the link if necessary). In this way, we can find a solution.
Thank you in advance.

https://www.paypal.com/paypalme/jettelly

Chapter I
Introduction to the shader
programming language.

14

The Unity Shaders Bible | Free Sample

Chapter I: Introduction to the shader programming language

Initial Observations.

Years ago, when I was just starting to study Unity shaders, it was very difficult to understand
much of the content I found in the books for various reasons. I still remember the day I was
trying to understand the semantic function POSITION[n]. However, when I did finally manage
to find its definition, I found the following statement:

“ “

Vertex position in object-space.

At that moment, I asked myself, what is Vertex position in Object-Space? Then I understood
that there was previous information that I had to know before starting to read about this
subject. In my experience, I have been able to identify at least four fundamental areas that
facilitate the understanding of shaders and their structure, such as:

	› Properties of a polygonal object.
	› Structure of a Render Pipeline.
	› Matrices, and coordinate systems.

1.0.1. Properties of a polygonal object.

The word polygon comes from Greek πολύγωνος (polúgōnos) and is composed of poly
(many) and gnow (angles). By definition, a polygon refers to a closed flat figure bounded
by line segments.

Properties of a polygonal object

(Fig. 1.0.1a)

15

The Unity Shaders Bible | Free Sample

Chapter I: Introduction to the shader programming language

A primitive is a three-dimensional geometric object formed by polygons and is used as a
predefined object in different development software. Within Unity, Maya or Blender, you can
find other primitives. The most common are:

	› Spheres.
	› Boxes.
	› Quads.
	› Cylinders.
	› Capsules.

All these objects are different in shape but have similar properties; all have:

	› Vertices.
	› Tangents.
	› Normals.
	› UV coordinates.
	› Color.

Which are stored within a data type called Mesh.

All these properties can be accessed independently within a shader and kept in vectors. This
is very useful because you can modify their values ​​and thus generate interesting effects. To
understand this concept better, here is a simple definition of the properties of a polygonal
object.

Properties of a polygonal object

(Fig. 1.0.1b)

16

The Unity Shaders Bible | Free Sample

Chapter I: Introduction to the shader programming language

1.0.2. Vertices.

The vertices of an object correspond to the set of points that define the area of a surface
in either a two-dimensional or three-dimensional space. In Maya and Blender, the vertices
are represented as the intersection points of an object mesh, similar to a set of atoms
(molecules).

Two main things characterize these points:

1	 They are children of the Transform component.
2	 They have a defined position according to the center of the total volume of the object.

What does this mean? Maya 3D has two default nodes associated to an object. These are
known as Transform and Shape.

The Transform node, as in Unity, defines the position, rotation, and scale of an object in
relation to the object’s pivot. The Shape node, child of the Transform node, contains the
geometry attributes, that is, the position of the object’s vertices in relation to its volume.

This means the vertex set of an object can be moved, rotated, or scaled, and at the same
time, the position of a specific vertex changed.

The POSITION[n] semantics in HLSL specifically gives access to the position of the vertices in
relation to their volume, that is, to the configuration exported by the Shape node from Maya.

Vertices

(Fig. 1.0.2a)

17

The Unity Shaders Bible | Free Sample

Chapter I: Introduction to the shader programming language

1.0.3. Normals.

Imagine that a friend is asked to draw on the front face of a blank sheet of paper. How could
you determine which is the front face of a blank sheet if both sides are equal? This is why
Normals exist.

A Normal corresponds to a perpendicular vector on the surface of a polygon which is used
to determine the direction or orientation of a face or vertex.

In Maya, the object Normals are visualized by selecting the property Vertex Normals. This
allows us to see where a vertex points in space and determines the hardness level between
the different faces of an object.

Normals

(Fig. 1.0.3a. Graphical representation of the Normals for each vertex)

1.0.4. Tangents.

According to official Unity documentation:

“ “

A tangent is a vector of a unit of length that follows the mesh
surface along the direction of the horizontal texture.

What does this mean? Look at Figure 1.0.4a to understand its nature. The Tangent is a
normalized vector that follows the U coordinate orientation of the UV on each geometry
face. Its main function is to generate a space called Tangent-Space.

18

The Unity Shaders Bible | Free Sample

Chapter I: Introduction to the shader programming language

Tangents

(Fig. 1.0.4a. By default, BiNormals cannot be accessed in a shader. Instead,

they need to be calculated in relation to the Normals and Tangents)

This property is reviewed in detail later, in Chapter II, section 6.0.1, as well as the Binormals
for the implementation of a Normal Map over an object.

1.0.5. UV coordinates.

Everyone has changed the skin of their favorite character for a better one. UV coordinates
are directly related to this concept since they allow you to position a two-dimensional
texture on the surface of a three-dimensional object. These coordinates act as reference
points, which control the corresponding texels in the texture map to each vertex in the mesh.

The process of positioning vertices over UV coordinates is called UV mapping and is a
process by which UV, that appears as a flattened, two-dimensional representation of the
object’s mesh, is created, edited, and organized. You can access this property within your
shader, either to position a texture on your 3D model or to save information in it.

UV coordinates

(Fig. 1.0.5a. Vertices can be arranged in different ways within a UV map)

19

The Unity Shaders Bible | Free Sample

Chapter I: Introduction to the shader programming language

The area of the UV coordinates is equal to a range between 0.0f and 1.0f, where the first
corresponds to the starting point and the second is the endpoint.

UV coordinates

(Fig. 1.0.5b. Graphic reference to the UV coordinates in a cartesian plane)

1.0.6. Vertex Color.

When you export an object from 3D software, it assigns a color to the object to be affected,
either by lighting or multiplication of another color. Such color is known as Vertex Color and
is white by default, with the values 1.0f in RGBA channels.

1.0.7. Render Pipeline Architecture.

In current versions of Unity, there are three types of Render Pipeline which are: Built-in RP,
Universal RP (called Lightweight in previous versions), and High-Definition RP.

It is worth asking, what is a Render Pipeline? To answer this, the first thing to understand is
the pipeline concept.

A pipeline is a series of stages that perform a bigger task operation. So, what does Render
Pipeline refer to? This concept could be thought of as the complete process that a polygon
object must take to be rendered onto our computer screen; it is like an object traveling
through Super Mario pipes until it reaches its final destination.

20

The Unity Shaders Bible | Free Sample

Chapter I: Introduction to the shader programming language

Render Pipeline Architecture

(Fig. 1.0.7a)

So, each Render Pipeline has its own characteristics, and depending on the type you are
using, will affect the appearance and optimization of objects on the screen in terms of:
material properties, light sources, textures, and all the functions that are occurring internally
within the shader.

Now, how does this process happen? For this, you must learn about its basic architecture.
Unity divides this architecture into four stages which are:

	› Application stage.
	› Geometry processing phase.
	› Rasterization stage.
	› Pixel processing stage.

Please note that this corresponds to the basic model of a Render Pipeline for real-time
rendering engines. Each of the mentioned stages has threads that will now be defined.

Render Pipeline Architecture

(Fig. 1.0.7b. Logic Render Pipeline)

21

The Unity Shaders Bible | Free Sample

Chapter I: Introduction to the shader programming language

1.0.8. Application Stage.

The application stage starts at the CPU and is responsible for various operations that occur
within a scene, e.g.,

	› Collision detection.
	› Texture animation.
	› Keyboard input.
	› Mouse input, and more.

Its function is to read the stored memory data to later generate primitives (e.g., triangles,
lines, vertices). At the end of the application stage, all this information is sent to the
geometry processing phase to then generate the vertices’ transformation through matrix
multiplication.

Application Stage

(Fig. 1.0.8a. Local position of vertices in a Quad)

1.0.9. Geometry processing phase.

The images that you see on the computer screen are requested by the GPU for the CPU.
These requests are carried out in two main steps:

1	 The configuration of the render state, which corresponds to the set of stages from
geometry processing up to pixel processing.

2	 And then, the object being drawn on the screen.

22

The Unity Shaders Bible | Free Sample

Chapter I: Introduction to the shader programming language

The geometry processing phase occurs in the GPU and is responsible for the vertex
processing of your object, which is divided into four subprocesses which are:

	› Vertex Shading.
	› Projection.
	› Clipping.
	› Screen mapping.

Geometry processing phase

(Fig. 1.0.9a)

Once the primitives have been assembled in the application stage, the Vertex Shading,
better known as the Vertex Shader Stage, carries out two main tasks:

1	 It calculates the object vertices position.
2	 Then it transforms its position to different space coordinates so that they can be

projected onto the computer screen.

Also, within this subprocess, you can select properties that you want to pass on to the
following stages, for example, Normals, Tangents, UV coordinates, etc.

Projection and clipping occur in this process, which vary according to the camera properties
in the scene: that is, if it is configured in perspective or orthographic (parallel). It is worth
mentioning that the complete rendering process only occurs for those elements that are
within the camera frustum, also known as the View-Space.

To understand this process, say there is a Sphere in the scene, where half of it is outside
the frustum of the camera. Only the area of ​​the Sphere that lies within the frustum will be

23

The Unity Shaders Bible | Free Sample

Chapter I: Introduction to the shader programming language

projected and subsequently clipped on the screen (clipping), while the area of ​​the Sphere
that is out of sight will be discarded in the rendering process.

Geometry processing phase

(Fig. 1.0.9b)

Once the clipped objects are in the memory, they are then sent to the screen map. In
this stage, the three-dimensional objects in the scene are transformed into 2D screen
coordinates, also known as Screen or Window coordinates.

1.1.0. Rasterization stage.

The third stage corresponds to rasterization. At this point, the objects have 2D screen
coordinates, so pixels in the projection area must be found. The process of finding all the
pixels that surround an on-screen object is called Rasterization. This process can be seen
as a synchronization point between the objects in the scene and the pixels on the screen.

For each object, the rasterizer performs two processes:

1	 Triangle Setup.
2	 Triangle Traversal.

Triangle Setup generates the data that will be sent to Triangle Traversal. It includes the
equations for the edges of an object on the screen. After this, Triangle Traversal lists the
pixels that are covered by the area of the polygon object. In this way, it generates a group
of pixels called fragments; and from this the word Fragment Shader, which is also used to
refer to an individual pixel.

24

The Unity Shaders Bible | Free Sample

Chapter I: Introduction to the shader programming language

1.1.1. Pixel processing stage.

Using the interpolated values from the previous processes, this last stage starts when all the
pixels are ready to be projected onto the screen. At this point, the Fragment Shader Stage,
also known as a Pixel Shader Stage, begins and is responsible for the visibility of each pixel.
What it does is process the final color of a pixel and then send it to the Color Buffer.

Pixel processing stage

(Fig. 1.1.1a. The area covered by a geometry is transformed to pixels on the screen)

1.1.2. Types of Render Pipeline.

As you already know, there are three types of Render Pipeline in Unity. By default, there is
the Built-in RP that corresponds to the oldest engine belonging to the software, in contrast,
Universal RP and High-Definition RP belong to a type of Render Pipeline called Scriptable
RP, which is more up-to-date and has been pre-optimized for better graphics performance.

Types of Render Pipeline

(Fig. 1.1.2a. When you create a new project in Unity, you can choose between these

three rendering engines. Your choice depends on the needs of the project at hand)

Regardless of the Render Pipeline , if you want to generate an image on the screen, you
have to travel through the pipeline.

25

The Unity Shaders Bible | Free Sample

Chapter I: Introduction to the shader programming language

A pipeline can have different processing paths, known as Render Paths; as if the example
pipeline in section 1.0.7 had more than one way to reach its destination.

A Render Path corresponds to a series of operations related to lighting and shading objects.
This allows you to graphically process an illuminated scene (e.g., a scene with directional
light and a sphere).

Among them you can find:

	› Forward Rendering.
	› Deferred Shading.
	› Legacy deferred.
	› Legacy vertex lit.

Each of these has different capabilities and performance characteristics.

In Unity, the default Rendering Path corresponds to Forward Rendering; this is the initial
path for the three types of Render Pipeline that are included in Unity (Built-in, Universal, and
High-Definition). This is because it has greater graphics card compatibility and a lighting
calculation limit, making it a more optimized process.

Types of Render Pipeline

(Fig. 1.1.2b. To select a rendering path in Built-in Render Pipeline, you must go to

the hierarchy, select the main camera and in the property Rendering Path you

can change the configuration according to the needs of your project)

26

The Unity Shaders Bible | Free Sample

Chapter I: Introduction to the shader programming language

To understand this concept, imagine an object and a direct light in a scene. The interaction
between them is based on the following two fundamental concepts:

1	 Lighting characteristics.
2	 Object material characteristics.

Such interaction is called the lighting model.
The basic lighting model corresponds to the sum of three different properties:

	› Ambient color.
	› Diffuse reflection.
	› Specular reflection.

The lighting calculation is carried out within the shader and can be done by vertex or
fragment. When the illumination is calculated by vertex it is called Per-Vertex Lighting and
performed in the Vertex Shader Stage. Likewise, when it is calculated by fragment it is called
Per-Fragment or Per-Pixel Lighting and is performed in the Fragment Shader Stage.

1.1.3. Forward Rendering.

Forward is the default Rendering Path and supports all typical features of a material
including Normal Maps, individual pixel illumination, shadows, and more. This rendering
path has two different code written passes that you can use in your shader, the first, base
pass and the second additional pass.

In the base pass you can define ForwardBase Light Mode and in the additional pass, you can
define ForwardAdd Light Mode for additional lighting calculations. Both are characteristic
functions of a shader with lighting calculations. The base pass can process directional light
Per-Pixel and will prioritise the brightest light if there are multiple directional lights in the
scene. In addition, the base pass can process Light Probes, global illumination, and ambient
illumination (sky light).

As its name says, the additional pass can process additional lights (Point Light, Spotlight,
Area Light) or also shadows that affect the object. What does this mean? If there are two
lights in the scene, your object will be influenced by only one of them, However, if you have
defined an additional pass for this configuration, then it will be influenced by both.

27

The Unity Shaders Bible | Free Sample

Chapter I: Introduction to the shader programming language

A point to consider is that each illuminated pass will generate an independent Draw Call.
What does this mean? By definition a Draw Call is a call graphic that is made in the GPU
every time an element is drawn on the screen of the computer. These calls are processes
that require a large amount of computation, so they need to be kept to the minimum
possible, even more so if you are working on projects for mobile devices.

To understand this concept, suppose there are four spheres and one directional light in your
scene. Each sphere, by its nature, generates a call to the GPU, this means that each of them
will generate an independent Draw Call by default.

Likewise, the directional light influences all the spheres that are found in the scene, therefore,
it will generate an additional Draw Call for each one.

This is mainly because a second pass has been included in the shader to calculate the
shadow projection, therefore, four spheres, plus one-directional light will generate eight
graphic calls in total.

Forward Rendering

(Fig. 1.1.3a. In the image above, you can see the increase in Draw Calls when there are light

sources. The calculation includes the ambient color and the light source as the object)

Having determined the base pass, if another pass is added in the shader, then another
Draw Call for each object will be added, and consequently, the graphic load will increase
respectively.

28

The Unity Shaders Bible | Free Sample

Chapter I: Introduction to the shader programming language

1.1.4. Deferred Shading.

This rendering path ensures that there is only one lighting pass computing each light
source in the scene, and only in those pixels that are affected by them, all this through the
separation of the geometry and lighting. This figures as an advantage since a significant
amount of light could be generated that influences different objects, thereby improving the
fidelity of the final render but nominally increasing the Per-Pixel calculation on the GPU.

While Deferred Shading is superior to Forward when it comes to calculating multiple
light sources, it comes with some restrictions, for example, according to official Unity
documentation, Deferred Shading requires a graphics card with multiple Render Targets,
Shader Model 3.0 or higher, and support for Depth render texture.

On mobile devices, this configuration works only on those that support at least OpenGL ES
3.0.

Another important consideration about this Rendering Path is that it can only be used
in projects with a perspective camera. Deferred Shading does not have support for
orthographic projection.

1.1.5. What Render Pipeline should I use?

In the past, there was only Built-in RP, so it was very easy to start a 2D or 3D project. However,
nowadays, the project must be started according to its needs, so you may wonder, what
does the project need? To answer this question, the following factors must be considered:

1	 If a video game is being developed for a PC you can use any of the three Unity Render
Pipelines available since generally, a PC has larger computing power than a mobile
device or a console. Then, if the video game is aimed at a high-end device, does it
need to graphically look realistic? If so, you could start in both High Definition and
Built-in RP.

2	 If the video game is wanted to be graphically in medium definition, you can use
Universal RP or, as in the previous case, Built-in RP too. Now, why does Built-in RP
appear as an option in both cases?

Unlike the previous ones, this Render Pipeline is much more flexible, hence, it is much more
technical and does not have pre-optimization. High-Definition RP has been pre-optimized

29

The Unity Shaders Bible | Free Sample

Chapter I: Introduction to the shader programming language

to generate high-end graphics, and Universal RP has been pre-optimized for mid-range
graphics.

Another important factor when choosing the Render Pipeline is the shaders. Generally, in
both High-Definition and Universal RP, shaders are created in Shader Graph, which is a
package that brings an interface that allows the development of shaders through nodes.

This brings with it a positive and negative side. On the one hand, you can produce shaders
visually through nodes without the need to write code in HLSL. However, if you want to
upgrade the unity version to a higher version during production (e.g. from 2019 to 2022), it
is very likely that the shaders will stop compiling because Shader Graph has independent
versions and updates.

The best way to generate shaders in Unity is through HLSL, since this way you can ensure that
your program compiles in the different Render Pipelines and continues to work regardless
of the Unity update. This concept will be discussed later when reviewing the structure of a
program in HLSL in detail.

1.1.6. Matrices and coordinate systems.

One of the concepts seen frequently in the creation of shaders is matrices. A matrix is a
list of numeric elements that follow certain arithmetic rules and are frequently used in
Computer Graphics.

In Unity the matrices represent a spatial transformation and among them are:

	› UNITY_MATRIX_MVP.
	› UNITY_MATRIX_MV.
	› UNITY_MATRIX_V.
	› UNITY_MATRIX_P.
	› UNITY_MATRIX_VP.
	› UNITY_MATRIX_T_MV.
	› UNITY_MATRIX_IT_MV.
	› unity_ObjectToWorld.
	› unity_WorldToObject.

30

The Unity Shaders Bible | Free Sample

Chapter I: Introduction to the shader programming language

All of these correspond to four-by-four matrices (4x4), that is, each of them has four rows
and four columns of numerical values.

They are conceptually represented is as follows:

UNITY_MATRIX
(
	 Xx, 	 Yx,	 Zx, 	 Tx,
	 Xy, 	 Yy, 	 Zy, 	 Ty,
	 Xz, 	 Yz, 	 Zz, 	 Tz,
	 Xt, 	 Yt, 	 Zt, 	 Tw
);

As previously explained in section 1.0.2 talking about vertices, a polygon object has two
nodes by default. In Maya, these nodes are known as Transform and Shape, and both are
in charge of calculating the position of the vertices in a space called Object-Space, which
defines the position of the vertices in relation to the position of the object’s center.

The final value of each vertex in the object is multiplied by a matrix known as the Model
Matrix (UNITY_MATRIX_M), which allows you to modify its transformation, rotation and
scale values. Every time the object is rotated, has its position or scale changed the Model
Matrix is ​​updated.

How does this process occur? To understand it try transforming a Cube in the scene. Start
by taking a vertex of the Cube that is in the position 0.5X, -0.5Y, -0.5Z, 1.0W with respect to its
center.

It is worth mentioning that the channel W corresponds to a coordinate system called
homogeneous, which allows the uniform handling of vectors and points. In matrix
transformations, the W coordinate can be equal to zero or one. When nW equals 1, it refers to
a point in space, while when it equals 0, it refers to a direction.

Later, this book talks about this system when vectors are multiplied by matrices and vice
versa.

31

The Unity Shaders Bible | Free Sample

Chapter I: Introduction to the shader programming language

Matrices and coordinate systems

(Fig. 1.1.6a. Identity matrix refers to the matrix default values)

One thing to consider with respect to matrices is that a multiplication can be carried out
only when the number of columns of the first matrix is equal to the number of rows of the
second. As already known, this Model Matrix has a dimension of four rows and four columns,
and the position of the vertices has a dimension of four rows and one column.

Since the number of columns in the Model Matrix is equal to the number of rows in the
position of the vertices, they can be multiplied and the result will be equal to a new matrix
of four rows and one column, which would define a new position for the vertices. This
multiplication process occurs for all vertices in the object and is carried out in the Vertex
Shader Stage.

Up to this point you already know that Object-Space refers to the position of a vertex
according to its own center, so what does World-Space, View-Space or Clip-Space mean?
The concept is basically the same.

World-Space corresponds to the position of a vertex according to the center of the world;
to the distance between the starting point of the grid in our scene (0X, 0Y, 0Z, 1W) and the
position of a vertex on the object.

If you want to transform a space coordinate from Object-Space to World-Space you can
use the internal variable unity_ObjectToWorld.

32

The Unity Shaders Bible | Free Sample

Chapter I: Introduction to the shader programming language

Matrices and coordinate systems

(Fig. 1.1.6b)

View-Space refers to the position of a vertex of our object relative to the camera view. If you
want to transform a space coordinate from World-Space to View-Space, you can use the
UNITY_MATRIX_V matrix.

Matrices and coordinate systems

(Fig. 1.1.6c)

Finally, Clip-Space, also known as Projection-Space, refers to the position of an object vertex
in relation to the camera’s frustum. So, this factor will be affected by the Near Clipping
Plane, Far Clipping Plane and Field of View.

If you want to transform a space coordinate from View-Space to Clip-Space, you can do it
using the UNITY_MATRIX_P matrix.

33

The Unity Shaders Bible | Free Sample

Chapter I: Introduction to the shader programming language

Matrices and coordinate systems

(Fig. 1.1.6d)

In general, the different space coordinates have been talked about at a conceptual level,
but what the transformation matrices refer to, has not yet been defined.

For example, the Built-in shader variable UNITY_MATRIX_MVP refers to the multiplication
of three different matrices. M refers to the Model Matrix, V the View Matrix, and P the
Projection Matrix. This matrix is mainly used to transform object vertices from Object-
Space to Clip-Space. Remember that the polygonal object has been created in a three-
dimensional environment while the screen of the computer, where it will be projected, is
two-dimensional, therefore you will have to transform the object from one space to another.

Later, this book will review these concepts in detail when using the UnityObjectToClipPos(
VRG) function included in the shader, in the Vertex Shader Stage.

Chapter II
Lighting, shadow
and surfaces.

181

The Unity Shaders Bible | Free Sample

Chapter II: Lighting, shadow y surfaces

Introduction to the chapter.

One of the most complex concepts in Computer Graphics is the calculation of lighting,
shadows, and surfaces. The operations we must perform to obtain good results depend
on several functions and/or properties, that in most cases, are very technical and require a
high level of mathematical understanding.

Before starting to create your functions, you must understand the theory behind each
concept and then move on to their implementation in the HLSL.

It is worth mentioning that in Unity there are some predefined programs that facilitate
lighting calculations for a surface (e.g. Standard Surface, Lit Shader Graph). However, it is
essential to continue studying using Unlit Shaders, since being basic color models, they
allow you to implement your own functions, and thus, obtain the necessary understanding
to generate customized lighting and its derivatives, either in Built-in RP or Scriptable RP.

5.0.1. Configuring inputs and outputs.

In section 3.3.0 of the previous chapter, you learned the analogy between the property
of a polygonal object and a semantic. Likewise, you could see how the latter is initialized
within a struct.

This section will detail the steps necessary to configure your object Normals and transform
its coordinates from Object-Space to World-Space.

As you already know, if you want to work with object Normals then you have to store the
semantic NORMAL[n] in a three-dimensional vector. The first step is to include this value in
the Vertex Input, as shown in the following example.

Configuring inputs and outputs

struct appdata

{

 …

 float3 normal : NORMAL;

};

194

The Unity Shaders Bible | Free Sample

Chapter II: Lighting, shadow y surfaces

Surface.

6.0.1. Normal Maps.

A Normal Map is a technique that allows you to generate details about a surface without
the need to add more vertices to the object.

To perform this process, the Normals must change direction following a reference frame. To
do this, each vertex is stored within a space coordinate called Tangent-Space. This type of
space is used for the object surface lighting calculation.

Normal Maps

(Fig. 6.0.1a)

To generate a Normal Map you have to use three normalized vectors, which together form
a matrix called TBN:

	› Tangents.
	› Binormals.
	› Normals.

Section 5.0.1 talked about how to transform Normals into World-Space using the matrix
unity_ObjectToWorld. Similarly, the TBN matrix is used to pass from one space to another,
so you can transform both the lighting and Normal Map from World-Space to Tangent-
Space.

207

The Unity Shaders Bible | Free Sample

Chapter II: Lighting, shadow y surfaces

Lighting.

7.0.1. Lighting model.

A lighting model refers to the result of the interaction between an object surface and the
light source. By definition, it includes the light source properties like color, intensity, etc.,
and the assigned material properties.

In a shader, illumination can be calculated per-vertex or per-pixel. When calculated by
vertex, it is called per-vertex lighting and the operation is performed in the Vertex Shader
Stage, when it is calculated by pixel, it is called per-fragment or per-pixel lighting and
is performed within the Fragment Shader Stage.

In the previous chapter, section 1.1.2, you conceptually defined the function of a Render
Path, which corresponds to a series of operations related to object lighting and shading.
You also illustrated two types of rendering, Forward Rendering and Deferred Shading.
In this section you will recreate a shader using a basic lighting model, and learn about
Ambient Color, Diffuse Reflection, and Specular Reflection.

7.0.2. Ambient Color.

A default value that you can find in real life is darkness. This is an interesting point because
all objects in their nature are dark and the reason you can differentiate between one surface
and another, is due to how lighting interacts with the properties of such a surface. This is
why light properties start at “zero,” because 0.0f equals “black,” that is, their default value.

233

The Unity Shaders Bible | Free Sample

Chapter II: Lighting, shadow y surfaces

Environmental Reflection

(Fig. 064)

Given its nature, calculating this type of reflection in real time uses a lot of GPU power,
instead, you can use a Cubemap type texture. In Chapter I, section 3.0.6, the Cube property
was mentioned, which refers precisely to this type of texture.

In Unity, you can generate Cubemaps using the Reflection Probe component. This object
works like a camera, which captures a spherical view of its surroundings in all directions
and then generates a Cube-type texture that you can use as a reflection map.

Environmental Reflection

(Fig. 7.0.5b)

To see its implementation in detail, create a new Unlit shader called USB_cubemap_
reflection. Start by declaring a new function to use later for generating reflections.

256

The Unity Shaders Bible | Free Sample

Chapter II: Lighting, shadow y surfaces

Shadow.

8.0.1. Shadow Mapping.

This technique generates Shadow Maps in a scene. Its concept is quite simple: the light and
shadow areas are generated in relation to the frustum of illumination that you are using,
that is, if the light source corresponds to a directional light, the shadow projection will be
orthographic, while if the source corresponds to a point light, then the projection will be
rendered in perspective.

This calculation is done by comparing whether a pixel is visible from the light source, as if
the source were the projection point. This concept is shown in Figure 8.0.1a.

Shadow Mapping

(Fig. 8.0.1a)

When you create a light source in your scene, the entire visible area, according to the light
source viewpoint, will be the illuminated area, and all the area outside it will be the shadow
zone. According to this logic, you can determine that this corresponds to a comparison
operation, but how does this process work?

To do this, you must review two concepts:

	› Shadow Caster.
	› And Shadow Map.

The Shadow Caster corresponds to the shadow projection area, while the Shadow Map
corresponds to the shadow cast on an object.

282

The Unity Shaders Bible | Free Sample

Chapter II: Lighting, shadow y surfaces

Shader Graph.

9.0.1. Introduction to Shader Graph.

Up to this point, much of the Render Pipeline structure has been reviewed, as well as
understanding of how a Unity shader works. Now you will look at Shader Graph, since its
structure and analogy are mainly based on all the previous knowledge acquired.

Shader Graph is a package that adds support for a visual node editing tool. Its interface is
used by artists and developers to create custom shaders through nodes instead of having
to write code. Even so, its Custom Function node has a high compatibility with HLSL, which
allows you to generate specific functions within the program.

Currently, Shader Graph is available for two rendering modalities, these are:

	› High Definition RP.
	› And Universal RP.

Introduction to Shader Graph

(Fig. 9.0.1a)

There are a few things to consider when working with Shader Graph, the versions developed
for Unity 2018 are BETA versions and do not receive support, whereas the later versions are
actively compatible and do receive support.

Chapter III
Compute Shader, Ray Tracing
and Sphere Tracing.

301

The Unity Shaders Bible | Free Sample

Chapter II: Lighting, shadow y surfaces

Custom Functions

// CustomLight.hlsl

void CustomLight_float(out half3 direction)

{

 #ifdef SHADERGRAPH_PREVIEW

 direction = half3(0, 1, 0);

 #else

 #if defined(UNIVERSAL_LIGHTING_INCLUDED)

 Light mainLight = GetMainLight();

 direction = mainLight.direction;

 #endif

 #endif

}

In the previous code block, you can deduce that if the preview in Shader Graph is enabled
(SHADERGRAPH_PREVIEW), you will project lighting for ninety degrees on the YAX. Otherwise,
if Universal RP has been defined, then the output direction will be the same as the direction
of the main light, that is, to the directional light you have in the scene.

Unlike the previous case, the CustomLight function has no inputs; therefore, a three-
dimensional vector will have to be added as output later in the node configuration. On the
other hand, it’s worth noting that such output is of half3 type. Consequently, the accuracy of
the node will be equal to a 16-bit value because, by default, it is configured as inherit.

Next, you must make sure to drag or select the .hlsl file in the Source box located in the
Graph Inspector Node Settings window. You must be sure to use the same name of the
function in the Name box; that is, CustomLight, otherwise it could generate compilation
errors.

337

The Unity Shaders Bible | Free Sample

Chapter III: Compute Shader, Ray Tracing and Sphere Tracing

Sphere Tracing.

According to the publication in The Visual Computer (1995) by John C. Hart;

“ “

Sphere tracing is a technique for rendering implicit
surfaces that use geometric distance.

What does the above statement refer to? Before going into detail, you will address some
fundamental points to understand the concepts related to its function.

Sphere Tracing, Sphere Casting or Ray Marching refer to the same concept. Basically it is
the process of “marching” along a ray, which is divided by points in space. This method is
often used for volume rendering, where there is no specific surface; instead, you have to find
the intersection between the ray and a surface defined by an “implicit distance” equation.

Sphere Tracing

(Fig. 11.0.0a. Sphere Casting over three red spheres)

In differential calculus, you can find explicit and implicit algebraic and transcendental
equations, e.g., the following implicit equation generates a three-dimensional sphere:

All its variables form part of the equation
X² + Y² + Z² - 1 = 0

345

The Unity Shaders Bible | Free Sample

Chapter III: Compute Shader, Ray Tracing and Sphere Tracing

Implementing functions with Sphere Tracing

fixed4 frag (v2f i) : SV_Target

{

 fixed4 col = tex2D(_MainTex, i.uv);

 // we discard the pixels that lie on the _Edge

 if (i.hitPos > _Edge)

 discard;

 return col;

}

If everything before has been done correctly in Unity, you will see something similar to that
of Figure 11.0.1c. The _Edge property will dynamically modify the discarded pixel border.

Implementing functions with Sphere Tracing

(Fig. 11.0.1c. _Edge equal to 0.251)

Note that the effect is “opaque,” that is, it has no transparency. Those discarded pixels will
not be executed; therefore, they will not be sent to the output color.

As you can see in Figure 11.0.1b, the ray’s origin is given by the camera position, while the ray
direction can be calculated by following the position of the vertices in the same space.

The declaration of these variables can be easily done in the Fragment Shader Stage using
the _WorldSpaceCameraPos variable, and then passing the vertices to the function as
shown in the following example:

360

The Unity Shaders Bible | Free Sample

Chapter III: Compute Shader, Ray Tracing and Sphere Tracing

Ray Tracing.

At this point, you have reviewed an essential part of the necessary knowledge for shader
development in Unity, both in Built-In and Universal RP. However, in this last section, you will
focus on understanding High Definition RP and its Ray Tracing configuration.

To start, ask the following question, what is Ray Tracing? To understand the concept, you
must pay attention to the behavior of lighting in the physical world.

Ray Tracing, like Sphere Tracing, uses the Ray Casting technique. However, in this particular
case, it concentrates on obtaining lighting contributions from reflective or refractive objects
in real-time, meaning that you can achieve a more realistic composition by sending rays
through each pixel on the screen, which collide and bounce off each object in the scene.

Ray Tracing

(Fig. 12.0.0a)

To accomplish a realistic composition you need to understand the following characteristics.

	› Global illumination.
	› Reflections.
	› Refractions.
	› Ambient occlusion.
	› Shadows.

Before Ray Tracing, such properties were calculated in the software through Lightmaps
which you can get from the Windows / Rendering / Lighting panel. However, given the nature

361

The Unity Shaders Bible | Free Sample

Chapter III: Compute Shader, Ray Tracing and Sphere Tracing

of this technique, the elements in the scene had to remain static, not allowing the possibility
of real-time calculations.

12.0.1 Configuring Ray Tracing in HDRP.

You will start this section using a default template from Unity Hub, version 3.0.0-beta.6. Such
a template looks like this.

Configuring Ray Tracing in HDRP

(Fig. 12.0.1a)

As mentioned at the beginning of this chapter, you need High Definition RP to perform these
exercises. You can check its configuration by going to the Windows / Package Manager
menu and ensuring that the High Definition RP package is installed in your project (as
shown by Figure 12.0.1b).

Configuring Ray Tracing in HDRP

(Fig. 12.0.1b)

Why not get the full book?
+370 informative pages on shader programming.
From beginner to advanced linearly, starting with

basic concepts (e.g. unlit shader) and ending
with advanced ones (e.g. compute shader).

Get an 15% OFF on your book purchase
using the USB15 code.

Get it now

https://learn.jettelly.com/unity-shader-bible/?Discount=USB15

Subscribe!

Follow us!

Join!

to our channel and keep
learning game dev!

to stay informed about
all the latest news,

updates, and more.

the group to share
your experiences with

other developers.

Go to Youtube

Go to Twitter

Go to Group

https://www.youtube.com/jettelly
https://twitter.com/ushadersbible
https://www.facebook.com/groups/jettelly

Jettelly Learn.

Latest books.

Collaborator courses.

Everything you need to reach success.

Welcome to Jettelly Learn! the place where
we share our knowledge about development and videogames with you.

See the eBook See the eBook See the eBook

Go to Jettelly Learn

Go to the Course

Make a 2D platformer
in Unity using Design
patterns.

Go to the Course

Make a JUICY 2D
shooter prototype
in Unity 2020.

Go to the Course

Object-Oriented
Programming for
Unity game devs.

https://learn.jettelly.com/rigging-animation-fundamentals/
https://learn.jettelly.com/secrets-liveops/
https://learn.jettelly.com/unity-shader-bible/
https://learn.jettelly.com
https://courses.sunnyvalleystudio.com/p/code-a-2d-platformer-game-in-unity-using-design-patterns?coupon_code=JETTELLY&affcode=1034998_fegn_1rz
https://courses.sunnyvalleystudio.com/p/make-a-juicy-2d-shooter-prototype-in-unity-2020?coupon_code=JETTELLY&affcode=1034998_fegn_1rz
https://courses.sunnyvalleystudio.com/p/learn-to-write-clean-object-oriented-code-in-unity?coupon_code=JETTELLY&affcode=1034998_fegn_1rz

Be our Collaborator.

GAME DEVELOPMENT
& EDUCATION.

We love developing video games and sharing
our knowledge with you.

Let’s grow together!
Join our collaborators program.

Contact Us

https://www.jettelly.com/#contact
https://www.jettelly.com/Unity
https://www.jettelly.com/Ludibyte
https://www.jettelly.com/SunnyValleyStudio
https://www.jettelly.com/EscueladeJuegos

